

Blending KNIME Data ETL and Analytics Capabilities with an Enterprise LIMS, ELN and Cheminformatics Platform

Ken Longo

June 1, 2022

The Big Picture

Wave Life Sciences is a genetic medicines company focused on delivering lifechanging treatments for people battling devastating diseases.

Early in the drug discovery process we use a combination of well-established enterprise software solutions for molecule registration, cheminformatics and data acquisition.

We use KNIME to interface with these platforms and perform a range of critical data ETL, modeling and analytics services.

A Story of Growth & Change at Wave...

- Grew from a small biotechnology startup of <10 people into a 225+ person company
- Sponsors clinical trials worldwide in the areas of Huntington's Disease, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis and Muscular Dystrophy
- Has a pipeline of several early-stage drug discovery programs that require an informatics infrastructure
- As we evolved our systems of organizing chemical entities and the data connected to them, our use of KNIME grew and changed also

Introduction to Wave Life Sciences

- Wave Life Sciences is a genetic medicines company focused on delivering life-changing treatments for people battling devastating diseases.
- Requires solutions for several domains:
 - Bioinformatics
 - Cheminformatics
 - Data processing/ETL assay data
 - Analysis (graphical, inference, prediction)
 - Clinical, manufacturing & commercial informatics
- Challenge & opportunity: interdisciplinary company with need for cross-domain expertise and platforms that integrate and connect

Blending KNIME with Common Drug Discovery Tools

Collectively, this developing system provides curated data and an electronic audit trail that supports IP and regulatory filings *and* quick and easy access to FAIRified data for deeper analytics.

Industry 4.0 & Pharma 4.0 Framework

The Four Industrial Revolutions

Our KNIME Setup

KNIME Server

- AWS-hosted
- Test and Prod environments
- Cron job, microservice and WebPortal workflows

KNIME WebPortal

Heavy internal use by scientists/drug discovery programs

Integrations

- R
- Python

Unlocking RNA editing with PRISM platform to develop AIMers: A-to-I editing oligonucleotides

Free-uptake of chemically modified oligonucleotides

ADAR RNase H

AGO2

Spliceosome

- First publication (1995) using oligonucleotide to edit RNA with endogenous ADAR1
- Wave goal: Expand toolkit to include editing by unlocking ADAR with PRISM oligonucleotides

- Learnings from biological concepts
- Applied to ASO structural concepts
- Applied PRISM chemistry

ADAR enzymes

- · Catalyze conversion of A-to-I (G) in doublestranded RNA substrates
- · A-to-I (G) edits are one of the most common post-transcriptional modifications
- ADAR1 is ubiquitously expressed across tissues, including liver and CNS

Endogenous

enzymes

Base Editing Pipeline Analyzes Sanger Sequencing Data

Reagents

1) Primer annealing and chain extension

Capillary gel electrophoresis and fluorescence detection

2) ddNTP binding and chain termination

- Sanger sequencing technology has been around in various forms since 1977
- Modern applications produce a sequence chromatogram "ab1" file
- The colors of the chromatogram are translated into the "AGCT" letter code
- We infer the %base editing from the AUCs of the traces

Sanger Base-Editing Pipeline

The **Sanger pipeline** for **RNA A->I editing measurement** is comprised of three KNIME workflows:

Metadata Input and Submission File Generation

- 96-well plate format input file to store metadata
- Exportation of vendor Sample Submission Form

Automated Data QC and Processing

- CRON job
- QC of Ab1 files
- Base representation at all transcript locations along AIMer calculated via editR

Data Retrieval

- Export edit site percent editing results
- Download chromatograms

Metadata Registration and Submission File Generation (1)

Automated ab1 file transfer to Server-mounted EFS (2)

- ab1 files deposited by vendor to Egnyte repository
- CRON job runs on KNIME Server to detect presence of new files in repo
 - Transfer to mounted EFS
 - Store file metadata in database

Automated Sanger Data QC and Processing (3)

- ab1 files QC'ed based on
 - Quality metrics
 - Compound alignment to sequence
- %base editing calculated across entire compound

Data Retrieval (4)

GCTGC X —	В	C	D	E	F	G	Н	1
	plate_number	well_pos	aso_index	base	area	perc	pval	qval
SNG-000195	01	42	24	G	77	22.58065	0.012521	:
SNG-000195	01	43	24	G	76	28.89734	0.002202	0.26418
SNG-000195	01	44	24	G	110	41.04478	0.0003	0.03599
SNG-000195	01	45	24	G	140	15.55556	0.0137	:
SNG-000195	01	46	24	G	103	10.98081	0.02742	
SNG-000195	01	47	24	G	212	100	2.61E-12	3.13E-10
SNG-000195	01	48	24	G	195	100	3.11E-12	3.73E-1
SNG-000195	01	49	24	G	75	26.1324	0.004848	0.58176
SNG-000195	01	50	24	G	70	23.56902	0.004157	0.49885
SNG-000195	01	51	24	G	86	33.33333	0.000396	0.04749
SNG-000195	01	52	24	G	73	26.64234	0.003198	0.38370
SNG-000195	01	53	24	G	138	15.54054	0.002734	0.32806
SNG-000195	01	54	2.4	c	100	19 12513	0.005076	0.60015

- **WebPortal** downloadable Excel files containing experimental metadata, base editing statistics and chromatogram plots
- **Dotmatics** Browser-based dashboard for program teams

Measuring (& Predicting) Tolerability in Mice

We **monitor behavior** of mice in response to chemical compounds repeatedly over several weeks:

- Activity
- Motor changes
- Breathing
- Physical characteristics
- Body weight

We use these data to build **predictive models** that help to inform our medicinal chemistry design and make molecules safer.

Behavioral Features Using Principal Components

- We used PCA to analyze data from mice treated with molecules
- PCA reduces a large number of complex variables and responses (behavior, body weight, etc) to a smaller number of patterns
- We ask how different treatments influence these patterns, and their relationships to chemical features of molecules

KNIME Server Webportal GUI for in vivo Wild-type Tolerability Prediction

The **WT Tolerability Predictive pipeline** uses KNIME for:

- Predictive Model Building and Validation
 - Feature Engineering and Selection
 - Model training and validation
- User-operated WebPortal tool for predictions
 - Fast calculation of predictions for new molecules
 - Distance measurement between new cases and existing model dataset

Predictive Model Building and Validation

- KNIME utilized for data cleaning, feature engineering/selection, and model building and evaluation
- Naïve Bayes Model built and validated for in vivo tolerability prediction
- 83% accuracy

Web Tool for Tolerability Prediction of New Compounds

LIFE SCIENCES

- User submits list of novel molecules
- Model returns tolerability score predictions
- Evaluate distance of predictions from historical tolerated molecule projections

Summary & Areas for Further Development

- Internal use of component building & sharing
- Expand our microservices framework and RESTful access to data
- Continue to refine our continuous integration/deployment framework
- Expand the reach of KNIME to non-data scientists through internal training programs
- Continue to develop along an Industry/Pharma 4.0 trajectory

