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Who We Are
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Avicenna Biosciences is first and foremost a drug development firm that generates NCEs using
medicinal chemistry and machine learning

Every machine learning scientist in Avicenna trained as either a chemist or a physicist first

We work exclusively on solving DMPK/Tox problems to enable quality chemical matter for
innovative clinical trials

Launched in 2019, we now have multiple programs in Oncology,
Neurodegeneration/Neuroinflammation and Autoimmune/Autoinflammatory indications

Future work will move us from purely development problems to more discovery-type programs
through our work on dataset augmentation with physics-based methods




Some Difficulties in Applying ML to Drug
Development

- Addressing a true drug development need is a major problem — the translation of a medicinal
chemistry design point to a machine learning experiment has been a major hurdle, and the
clarity of machine learning experimental design has been low in the past

- As an example, there is a miscommunication between the medicinal chemists discussing
multiobjective optimization and the ML people who hear “end-to-end”

- Additionally, the process of data sourcing and curation has limited transparency and no
established process for formal presentation either to internal or external audiences

- We have developed two tools that aid us in designing algorithms for our internal programs: ML
experiment design diagrams and Schematic of Literature Inclusion Criteria for Experiment in ML
(SLICE ML)
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ML Experimental Design
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The applicability domain for various ML methods is not equivalent for all methods, and
some methods have limited utility for problems within chemical biology and drug
development/discovery

In our experience, there is a communication gulf between machine learning scientists and
medicinal chemists/pharmacologists

This miscommunication can result in the selection of ML methods which fail to have utility
for predicting desired solutions to discovery or development problems

A way of representing the design of machine learning experiments that is accessible to
non-ML scientists would reduce miscommunication




ML Experimental Design

Explicit Training and
Testing Sets

» Train/Test Splitting —»

-» Cleaning Method ——» Calculable Properties >->

Random Forrest
Aleorithm Tvpe (Tree Conditions: Information Gain Ratio,
& yp Limited Tree Depth < 15, No Node Size
Minimum)
Number of Trees 200
Learning Type Supervised Learning
Point of Run Replication Test/Train Split
Number of Replicate Runs Triplicate
Independent Variable ECFP4
' Dependent Variable Active = (1,0)
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FEPML Background — Theory

- Machine learning in combination with Relative Binding Free Energy (RBFE) calculations
* Machine learnings applicability domain is limited to the availability of data
* How do we overcome the limitations of information poor projects?

* RBFE has emerged as highly accurate molecular mechanics methods to predict binding affinity of similar
compounds to a given target (1-2kcal/mol)

* FEP is currently the gold standard

- Rationale
* FEP calculations can serve as an input to ML algorithms to partially overcome information sparse limitations
* Reduce time and cost associated of traditional medicinal chemistry efforts (5100-150 vs $2000-5000)

Avicenna
Biosciences

Kaiser, T. M.; Burger, P. B., Molecules, 2019, 24, 2115



ML Experimental Design Diagrams
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ML Experimental Design Diagrams
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ML Experimental Design Diagrams
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ML Experimental Design Table

Random Forest
Aleorithm T (Tree Conditions: Gini Split Criterion, No
gorl ype Maximum Tree Depth, No Node Size
Minimum)
Number of Trees 1000
Learning Type Supervised Learning
Point of Run Replication n=11/122 partitioning
Number of Replicate Runs 10-fold
Independent Variable ECFP4
Dependent Variable Active = (1,0)
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Lessons from Systematic Review and Meta-Analysis

- Machine learning involving multiple sets of literature
and intra-organizational data is inherently a form of
meta-analysis

- Medicine has explored solutions for transparency
issues in experimental design for meta-analysis

- The solution most commonly employed is the use of
the systematic rigor of inclusion/exclusion of data
provided by the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA)

Avicenna
Biosciences

Records removed before
screening:

Duplicate records removed (n =)
Records marked as ineligible by
automation tools (n =)

Records removed for other
reasons (n =)

Records excluded**

(n=)

Reports not retrieved

(n=)

Reports excluded:
Reason 1 (n =)
Reason 2 (n =)
Reason 3 (n =)
etc.

f=
o
= Records identified from*:
Sg Databases (n =)
b= Registers (n =)
3
!
)
Records screened
(n=)
Reports sought for retrieval
2 (n=)
c
o
: !
7]
(7]
Reports assessed for eligibility
(n=)
N——
H Studies included in review
)
3 (n=)
= Reports of included studies
(n=)
N—

Page, M. J.; et al, BMJ, 2021, 372, n71




Schematic of Literature Inclusion Criteria for
Experiments in Machine Learning - SLICE ML
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Conclusions

- We have drawn on other disciplines to generate methods for a rigorous standardization
that allows machine learning, chemistry and biology to integrate into a single environment

- Clear diagrams of the machine learning experiment have enabled better translation of
chemical or biological information into machine learning systems

- The formalization and transparent representation of the process of data cleaning for ML
through SLICE ML has enabled more robust applications in our drug development process
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