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Who We Are

• Avicenna Biosciences is first and foremost a drug development firm that generates NCEs using 
medicinal chemistry and machine learning

• Every machine learning scientist in Avicenna trained as either a chemist or a physicist first

• We work exclusively on solving DMPK/Tox problems to enable quality chemical matter for 
innovative clinical trials

• Launched in 2019, we now have multiple programs in Oncology, 
Neurodegeneration/Neuroinflammation and Autoimmune/Autoinflammatory indications

• Future work will move us from purely development problems to more discovery-type programs 
through our work on dataset augmentation with physics-based methods



Some Difficulties in Applying ML to Drug 
Development

• Addressing a true drug development need is a major problem – the translation of a medicinal 
chemistry design point to a machine learning experiment has been a major hurdle, and the 
clarity of machine learning experimental design has been low in the past

• As an example, there is a miscommunication between the medicinal chemists discussing 
multiobjective optimization and the ML people who hear “end-to-end”

• Additionally, the process of data sourcing and curation has limited transparency and no 
established process for formal presentation either to internal or external audiences

• We have developed two tools that aid us in designing algorithms for our internal programs: ML 
experiment design diagrams and Schematic of Literature Inclusion Criteria for Experiment in ML 
(SLICE ML)



ML Experimental Design

• The applicability domain for various ML methods is not equivalent for all methods, and 
some methods have limited utility for problems within chemical biology and drug 
development/discovery

• In our experience, there is a communication gulf between machine learning scientists and 
medicinal chemists/pharmacologists

• This miscommunication can result in the selection of ML methods which fail to have utility 
for predicting desired solutions to discovery or development problems

• A way of representing the design of machine learning experiments that is accessible to 
non-ML scientists would reduce miscommunication



ML Experimental Design

Algorithm Type

Random Forrest 
(Tree Conditions: Information Gain Ratio, 

Limited Tree Depth < 15, No Node Size 
Minimum)

Number of Trees 200

Learning Type Supervised Learning

Point of Run Replication Test/Train Split

Number of Replicate Runs Triplicate

Independent Variable ECFP4

Dependent Variable Active = (1,0)



FEPML Background – Theory 

• Machine learning in combination with Relative Binding Free Energy (RBFE) calculations
� Machine learnings applicability domain is limited to the availability of data  
� How do we overcome the limitations of information poor projects?
� RBFE has emerged as highly accurate molecular mechanics methods to predict binding affinity of similar 

compounds to a given target (1-2kcal/mol)
� FEP is currently the gold standard

• Rationale 
� FEP calculations can serve as an input to ML algorithms to partially overcome information sparse limitations  
� Reduce time and cost associated of traditional medicinal chemistry efforts ($100-150 vs $2000-5000)

Kaiser, T. M.; Burger, P. B., Molecules, 2019, 24, 2115



ML Experimental Design Diagrams

Kaiser, T. M.; Burger, P. B., unpublished



ML Experimental Design Diagrams

Kaiser, T. M.; Burger, P. B., unpublished



ML Experimental Design Diagrams

Kaiser, T. M.; Burger, P. B., unpublished



ML Experimental Design Table

Algorithm Type

Random Forest 
(Tree Conditions: Gini Split Criterion, No 

Maximum Tree Depth, No Node Size 
Minimum)

Number of Trees 1000

Learning Type Supervised Learning

Point of Run Replication n = 11/122 partitioning

Number of Replicate Runs 10-fold

Independent Variable ECFP4

Dependent Variable Active = (1,0)

Kaiser, T. M.; Burger, P. B., unpublished



Lessons from Systematic Review and Meta-Analysis 

Page, M. J.; et al, BMJ, 2021, 372, n71

• Machine learning involving multiple sets of literature 
and intra-organizational data is inherently a form of 
meta-analysis

• Medicine has explored solutions for transparency 
issues in experimental design for meta-analysis

• The solution most commonly employed is the use of 
the systematic rigor of inclusion/exclusion of data 
provided by the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA)

Records identified from*:
Databases (n = )
Registers (n = )

Records removed before 
screening:
Duplicate records removed  (n = )
Records marked as ineligible by 
automation tools (n = )
Records removed for other 
reasons (n = )

Records screened
(n = )

Records excluded**
(n = )

Reports sought for retrieval
(n = )

Reports not retrieved
(n = )

Reports assessed for eligibility
(n = ) Reports excluded:

Reason 1 (n = )
Reason 2 (n = )
Reason 3 (n = )
etc.

Studies included in review
(n = )
Reports of included studies
(n = )
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Kaiser, T. M.; Burger. P. B., unpublished

Schematic of Literature Inclusion Criteria for 
Experiments in Machine Learning - SLICE ML

Records identified from:
External Databases (n = )
Internal Databases (n = )

Records removed before Screening:

Duplicate records removed  (n = )
Records removed for other reasons (n = )

Records screened
(n = )

Datapoint removed by General 
Screening:

Records with unknown assay type (n = )
Records with missing values (n = )
Records with missing structure (n =  )

Datapoints assessed for 
eligibility in for ML Experiment
(n = )

Datapoint removed by Specific 
Exclusion Criteria:

Reason 1 (n = ) [e.g. data value outside 
typical range]
Reason 2 (n = ) [e.g. data value 
generated at edge of dose-response 
curve]
Reason 3 (n = ) [e.g. data value is for 
non-relevant assay type]
etc.

Final Dataset (n = )
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Conclusions

• We have drawn on other disciplines to generate methods for a rigorous standardization 
that allows machine learning, chemistry and biology to integrate into a single environment

• Clear diagrams of the machine learning experiment have enabled better translation of 
chemical or biological information into machine learning systems

• The formalization and transparent representation of the process of data cleaning for ML 
through SLICE ML has enabled more robust applications in our drug development process


